收藏本站 设为首页
 主页 > 香港最快开奖结果2018 >

麦克斯韦(Maxwell)的遗产 一位微波工程师的心得体会965089.com

编辑:admin 日期:2019-10-08 15:27 分类:香港最快开奖结果2018 点击:
简介:相伴的工作便成了我的酷爱。数字化电磁学(EM)已经吸引了我过去二十年的注意力。渐渐地,我开始了以在过去的好时光的方式来回味麦克斯韦方程。我开始对麦克斯韦这个家伙产生了兴趣(图1)。历史学家们公认他是19 世纪最出色的物理学家,与爱因斯坦(Einstei

  相伴的工作便成了我的酷爱。数字化电磁学(EM)已经吸引了我过去二十年的注意力。渐渐地,我开始了以“在过去的好时光”的方式来回味麦克斯韦方程。我开始对麦克斯韦这个家伙产生了兴趣(图1)。历史学家们公认他是19 世纪最出色的物理学家,与爱因斯坦(Einstein)和牛顿(Newton)齐名。任何一个书店或图书馆都有爱因斯坦和牛顿的传记…那么麦克斯韦的传记又在哪里呢?

  图 1 詹姆斯·克拉克·麦克斯韦创建了电磁场理论,并且被认为与牛顿和爱因斯坦齐名。

  确实,很难找到麦克斯韦的传记。在过去大约十年中,我做了很多努力找到了一些,并且在管理公司,编程,写文章和做研究之余,我已经决心要了解一点我们领域的这位创始人。虽然无论从哪方面讲我都算不上是一个历史学家,但我愿意与你们分享从一个微波工程师的视角出发所得到的一个体会。为此我所取得的一个成就便是作为一个MTT-S 杰出演讲人无偿地来讲述“詹姆斯·克拉克·麦克斯韦的一生” [1] 。在这篇文章中,我花费了比演讲所允许的更多的时间详细地讨论了影响麦克斯韦最重要的遗产的事件。有趣的是,965089.com。他最重要的遗产并不是位移电流。甚至不是麦克斯韦方程。

  了解麦克斯韦一生最好的信息来源可能是刘易斯·坎培尔(Lewis Campell)和威廉·加内特(William Garnett)所写的1882 年的传记[2]。图2 是来自于传记的根据现实场景所绘制的水彩画。这幅画展示出当麦克斯韦还是个孩子时便对波现象(小提琴)产生了兴趣。通常,这本书只能在大图书馆的稀有图书室中才能找到。我们还是回到当我第一次对麦克斯韦产生兴趣时,我得到了一本这样的书,我对它进行了扫描,再转为文字形式,这是一个相当长的处理过程。今天,你可以从[3]所列出的网址上免费下载PDF 格式的完整的传记,包括第二版中的特别部分。

  图 2 在麦克斯韦六岁时,他便对小提琴是如何工作的产生了兴趣,完全忽略了舞蹈者。这幅画是取自描述生活情景的水彩画。

  但是他最感兴趣的事还是户外活动…跨越沟渠,爬树,看着树倒下,并且在它们倒下时爬上去进行盛大的游戏,在七月的热天去捅马蜂窝,吹肥皂泡,惊异于它们颜色的改变…

  我相信对一个年轻男孩子来说,从正在倒地的树上往下跳,捅马蜂窝来玩是非常刺激的,但是他对肥皂泡的兴趣才说明了他的未来。

  在亚里斯多德时代之前,光的本质便成为人们思考的课题。在麦克斯韦之前的一个世纪里,牛顿理论和惠更斯理论(图3)在为征服自然哲学家的思想而进行着竞争,在那时,他们被认为是物理学家。牛顿认为,光是很小的微粒,颜色是由于微粒加速穿越以太时发生振动而产生的。惠更斯认为光完全是一种波动现象,是在以太中进行传播的。

  图 3 (a)牛顿和(b)惠更斯在18 世纪提出了具有竞争性的光理论(微粒与波)。

  托马斯·杨证明肥皂泡上的颜色是波相互干涉的结果,从而支持了惠更斯的波理论。然而,这个假设还有一些困难,这是麦克斯韦在15 岁时便看到的。坎培尔这样记录着:

  在 1847 年的春天…他的叔叔,约翰·柯(JohnCay) 先生,…带着詹姆斯和我…去看望尼可( Nicol ) , 戴 维 · 布鲁斯特( David Brewster)先生的朋友,他是偏振棱镜的发明人。即使在此之前,詹姆斯通过冰洲石已经被“偏振光”吸引了,…但是这次访问又为他对这种现象的兴趣增添了新的重要的动力,以及由此而产生的思考。

  冰洲石是一种纯净的晶体形式的方解石,是双折射性的。在一个极化方向有一个折射率,在与之相正交的另一个极化方向上有另一个折射率。如果在纸上画一条线,将水晶放在纸上,你可以看见两条线。二个未经极化的光束射到晶体上,这个光会被分成“常规光束”和“非常规光束”。尼可找到一种方法可以将两块冰洲石相粘合来将两种光线分开。

  尼可对年轻的麦克斯韦印象极其深刻,他给了麦克斯韦两套偏振棱镜。回到家后,麦克斯韦把玻璃迅速熔化,然后将其倒入模具中。他随后将玻璃迅速冷却,这样在玻璃中便存在着很大的应力。他将一块偏振棱镜放在玻璃的后面(“偏振仪”),第二块棱镜放在玻璃的前面(“分析仪”)。他制作了一个显画器,并且亲手做出了玻璃应力模式的水彩画,见图4。然后,他解出了斯托克斯(Stokes)方程,并且将测量和计算结果发表在文章中。

  图4 作为一个少年,麦克斯韦使用偏振光探索了在未经过退火的玻璃中的应力。因为光被极化了,因此它必须是横波,这是光的波理论所面临的主要困难。

  有两个原因使得这件事情变得意义重大。首先,麦克斯韦实际上在进行场的工作。应力和张力纯粹属于力学,完全属于物理场;没有什么抽象的意义,但他们都是场;(一个场是在空间内定义的一个矢量)。

  第二个具有明显意义的是这个实验所展示的与光的波理论相关的关键问题。声音是一个纵波。空气在发射机到接收机这条线上来回振动。因此,它无法被极化。另一方面,不存在在媒介中(空气)传播所存在的剪切强度的问题。

  如果波被极化了,它必须从一边-向-另一边进行横向振动。它能够上下振动(垂直极化)或一边-向-另一边振动(水平极化)。一个小提琴的弦(图2)产生一个横向驻波。一个波必须有一个让它可以在其内进行振动的媒介(记住,这是在19 世纪),这几种未被探测到的媒介被称为以太。以太的剪切强度必须为零。例如,星光在这个以太中通过振动向我们走来。而地球在它的轨道上没有阻力地穿过同样的空间。

  问题是,你如何可以在一个没有剪切强度的媒介中得到一个横向起伏的波?光的波理论毕竟还不是完美无缺的。

  麦克·法拉第(Michael Faraday)(图5)随后进入了人们的视野中。就在麦克斯韦出生后几个月,法拉第正在进行着磁感应实验。这似乎是在做非常合理的事。给出一个线圈,电便会产生磁。因此,根据对称性的本质,为什么磁不能产生电呢?以前曾多次试图进行实验,但全都失败了。磁不能产生电,法拉第经历了相同的失败。

  等等!那是什么?法拉第注意到当他打开实验用的开关时,他的仪表出现了轻微的晃动。合上开关。又一个轻微的晃动。他得到了。窍门是须将磁铁接通和关闭时才能得到它。磁的感应需要一个变化的电流。随后出现了发电机。注意我还没有提到磁场;这个概念在那个时候还不存在。

  法拉第来自于一个贫穷的,地位卑下的家庭,没有受过大学教育,并且也没有什么数学技能。然而,他具有超凡的直觉。他观察到了沿着磁铁“力量线”的磁以太的涨落而产生的感应(与光以太不同)。他将磁以太的状态称为“电紧张状态”。存在两个问题:法拉第没有数学技能来发展他的思想,并且“远距离的作用” 概念在那个时候已经牢固地树立起来并且得到了确认。

  由普利斯特里(Priestly)首先提出,随后是卡文迪什(Cavendish),库伦(Coulomb)使用扭力平衡将远程作用进行了量化。按照这个理论,两个电荷之间的作用力与它们之间距离的平方成反比。对于磁力也同样适用。确实,当事情发生变化或移动时,便出现了困难,但已经做了一些尝试来解释说明,那么为什么要抛弃别人已经做了的工作,而要使用法拉第复杂的,想象出的力量线呢?

  更重要的是,由于在重力作用物体之间缺乏力学连接,从而使得牛顿对此不是很满意,但牛顿还是用它的万有引力理论解释了远距离作用力的正确性。将这些现象纳入牛顿理论框架中是很重要的,因为,那时牛顿是物理界的上帝。如果你在物理方面的工作不能推回到f =ma 及牛顿,你不用奢望别人会认真地对待你。

  当麦克斯韦20 多岁,还是剑桥大学的学生时,他便开始进行法拉第的力量线的工作。当他得到了Aberdeen 的教授职位而离开剑桥时,他的工作便中断了,在这期间,麦克斯韦进行了土星环的构成方面的研究[4][见图3(b)]。通过他发表的文章,麦克斯韦树立了其具有一流数学能力的声望。

  麦克斯韦在随后的几年时间里进行了法拉第力量线的工作(这只是他所做的许多事情中的一件,包括色彩的感知和热力学),他在1865 年发表的动态电磁理论中对其研究工作的积累做了总结。这个震撼世界理论的发表,恐怕是整个世纪中最重要的事件,它受到了许多赞美…一个伟大的呐喊!后来发生了更多的事。

  要知道麦克斯韦的理论是如何开发的,我们研究一下他所发表的描述工作进展的三篇文章。第一篇是“关于法拉第力量线 岁,就在他离开剑桥去Aberdeen 之前:

  此时还不能使用任何电理论,除非它不仅可以反映静态的电与电流之间的关系,同样可以显示出两种状态的电的吸引和感应效应。这种理论必须能准确地满足这些定理, 即所知晓的数学形式,还必须提供一种方法来计算当这些公式不再适用时的极限情况。因此,为了满足这些科学要求,学生必须使自己熟悉大部分最错综复杂的数学,仅仅将它们记在脑中而不去应用是会阻碍自身的进一步发展的。

  图 5 麦克·法拉第(Michael Farady )发现了磁感应,并且提出了力量线,从而产生了麦克斯韦的电磁理论。

  在这里我们看出那个时期的物理已认识到电流仅仅是运动的静态电。他们还不知道这种电流的形式,甚至不知道它是否有两种形式的流动(正方向和负方向),当其中一种流动形式不存在时,便是第二种流动形式,或者是两种形式的混合。

  我们同样看到麦克斯韦的目标是将静态的电效应与电流效应相联系。他意识到很难将所有存在的极其复杂的部分结果协调进入一个统一的理论中。

  他进一步强调“这种简化的结果可以用纯数学公式表达或一个物理假设的形式来表达”。

  麦克斯韦在这里指出数学抽象的这种折衷会忽略事实。但是通过物理模型,你可能只能得到一个部分的解释。他指出自己的研究是数学的,但会紧密地与物理模型相联系,从而可以吸收两种方式的优点。麦克斯韦随后完全摒弃了物理假设,但在那个时候,物理模型是很重要的。如果麦克斯韦想要受到别人的认真对待,则必须在某些地方出现牛顿和f = ma。

  麦克斯韦经常引用他的好友威廉姆· 托马斯(William Thomson,后来叫做Lord Kelvin)的工作,指出自然界中常见的相似性。

  我们已经发现热在均匀媒介中的均匀移动与那些与距离的平方成反比的吸引力的变化是相同的。我们只需用中心引力来替代热量,任何一点的吸引力的加速度来代替热流,用势能来代替温度…

  麦克斯韦在这篇文章中使用“比拟思维”,用液体流动来解释电磁力。麦克斯韦定义法拉第的力量线是一个无惯性物体在磁力作用下的运动路径。麦克斯韦随后想象出在每一个法拉第力量线上有一个管子。这个管子是有尺寸的,因此一个单位的流体总是在单位时间内在这个管子中流过单位长度。这意味着在距离磁铁的某些距离上,由于流动速度(磁力)变小,而使得管子变大。麦克斯韦指出管子在任何地方都不存在未占用空间;磁力像不可压缩的液体一样流动着。

  麦克斯韦指出知道了在闭合表面流动的液体,根据已知的传导定律便可决定(无源的)其在内部的整个体积内的流动。磁力是由这个流体的压力之差所决定的,磁导率(现代用的名词)可以解释为流体流过管子的容易程度。类似的模型可被用于静电问题。

  通过将假想的流体运动中的一切都用纯几何来表示,我希望能够获得其一般性和准确性,避免从自称可以解释造成这种现象之原因的不成熟的理论所带来的危险。

  麦克斯韦强调,他并不想假设某种流体的流动实际上引起了所观察到的电磁力。相反,他试着用与流体流动的类似性来看看是否对将来的研究有用。麦克斯韦文章中剩下的部分逐渐地开发了一个流体流动的详细的数学理论,并且显示出它如何对电磁力产生类似的结果。

  想像中的或其它方式的不可压缩的流体流动是不可能支持像光这样的横波的。1862 年,在麦克斯韦30 岁时发表的第二篇文章[6],“关于物理力量线”中,麦克斯韦保留了物理模型的模拟性:

  我现在建议从力学的角度来研究磁现象,并且确定什么样的媒介中的张力或媒介中的运动能够产生所观察到的力学现象。如果在同样的假设条件下,我们能够将电磁现象中的磁性吸引现象与所感应电流的现象联系起来的话,我们就已经找到了一种理论,如果不对的话,只能由实验来证明是错误的。这个实验可以极大地扩展我们对这部分物理的认识。

  历史学家们承认麦克斯韦是 19 世纪最伟大的物理学家,与爱因斯坦和牛顿齐名。

  这个新的力学模型仍然采用了流体,但现在流体中充满了涡流。这些涡流围绕着法拉第的力量线。这些力量线是流体的张力,张力是由涡流产生的。麦克斯韦所提供的一个例子(见图6)显示出磁铁的北极(图6(a))是镶嵌在均匀“磁力场”之中的(磁场的概念那时仍然不存在)。磁铁的南极是镶嵌在同一个磁场之中的(图6(b))。当力量线(来自磁铁和来自均匀场)是同向时,涡流相加(产生张力,从而产生磁力)而增大。当力量线反向时,结果相反。净效应是磁铁会受到一个力矩试图指向北极,就像指南针一样。

  麦克斯韦给出了对这个力学模型详细的数学分析,指出涡流周边的周转率与磁力成正比,并且流体的密度与“产生磁感应的介质的容量”成正比,即,磁导率。

  麦克斯韦并不知道这些涡流究竟是什么,但是他认为这可能是电流以某种方式产生的。

  我们应当总是用箭头来标出方向,我们必须沿着这个箭头方向才能看到涡流是沿着手表指针的方向来旋转的。这个箭头便指出了磁场中朝北的方向…

  这是我所看到的最早发表的右手定则的描述和示意,最近也同样被用作IEEE 的标志。

  图 6 (a)1862 年:当力量线是同向时,麦克斯韦演示出它们的力量线是相加的,将罗盘的北极指针拉着指向北。(b)麦克斯韦使用的右手定则。

  在麦克斯韦之前的一个世纪,牛顿理论和惠更斯理论在为征服自然哲学家的思想而进行着竞争,虽然他们那时都被认为是物理学家。

  我已经发现很难将媒介中存在的涡流在同样方向上以并行形式一排一排地旋转表达出来。相邻涡流的联接部分必须以相反方向来运动;很难理解媒介一部份的运动如何能够和与之相连的另一部份进行相反运动的媒介共存。

  为了修正这个问题,麦克斯韦插入了“一个粒子层作为一个空载层来介入”,如图7 所示。这个粒子层允许涡流按相同方向进行旋转。他同样用这些粒子来模拟电流作为粒子的净运动。麦克斯韦指出,与涡流相比,这些粒子的尺寸和质量非常小。他还指出,它们的转动在分子内部没有产生滑动和碰撞。但是如果它们从一个分子传到另一个分子,它们便会受到阻力,并且产生热量。在今天看来,这些模型或多或少与导体中的“电子海”相类似,涡流是导体的原子,空载轮是电子。

  这个力学系统同样可以模拟静电,麦克斯韦对今天被我们称之为极化的电荷进行了描述:

  在被感应的电介质[静电]中,我们可以想象每个分子中的电被移动了,一端显示出正的极性,一端显示出负的极性,但电是完全与分子整体连接在一起的,因此没有从一个分子穿越到另一个分子内。

  麦克斯韦随后指出这种电的位移并不是电流,因为它还是被束缚在涡流之中的,但“它是电流的开始”。涡流被赋予了一定程度的弹性,这样,当位移中止时,移动的电荷又弹回到分子中。这看来似乎是麦克斯韦位移电流的开始,他将这个关键项加入到今天被称为麦克斯韦的方程中。

  既然涡流有弹性,力学模型便可以支持横波,从测量的电气和磁力弹性所计算出的横波速度与测得的光速吻和得很好。因此,麦克斯韦提出光和电磁波现象可能是同样媒介的波动引起的。他还没有真正提出实际上光本身可能就是电磁。

  麦克斯韦的主要文章[7],题为“电磁场的动态理论”,是在1864 年底才被宣读的(在一次会议上介绍的),当时麦克斯韦是33 岁。在这篇文章中,他完整地提出了电磁理论,但它还不是我们所熟悉的4 个方程。首先,麦克斯韦没有使用现代矢量代数,这是在麦克斯韦去世后由吉布斯(因Gibbs 现象而著名)所推导出的(见图8)。在这篇文章中,麦克斯韦用迪卡尔坐标系中的三个标量方程来表示矢量差分方程。后来,在他论文的第三版中[8],他使用了“四元法”,将事情变得更糟了[9]。在这篇文章中,麦克斯韦确实使用了,但他仅仅是为了标记上的方便。

  其次,麦克斯韦以磁矢量势能(这便是法拉第的“电紧张状态”(electrotonic state))为主。磁场和电场为次。亥维塞(Heaviside)注释到[9]:“我一直没有任何进展直到我将所有的势能都扔掉,而将E 和H 作为注意的对象…”

  坦率地说,亥维塞同样注意到了现代的全双工形式(这种形式显示出了E 和H 的对称性,是由亥维塞推导出的):

  …带来了许多有用的联系,这种联系以前是由于被隐藏在矢量势能的干涉和其杂散的表示而未能看到。

  麦克斯韦在这篇文章中提出了含有20 个变量的20个方程。亥维塞用数学手段将它们放入现代的形式。赫兹(Herz)(见图9)通过对在距离模型中的作用施加一个无限系列的局部修正也独立地推导出了同样的现代形式的方程。两个人都废弃了用作主要参数的势能。具有讽刺意义的是,物理学家们现在又回过头来将势能作为主要参数[10]。

  我所提出的理论可能被称为电磁场,因为它是与电或磁铁自身的周围空间有关的…

  对于我来说,这意味着麦克斯韦是使用术语“场”来代表一个感兴趣的区域,就好比“战场”。我这么强调是因为这是一个个人观点;历史学家们很可能具有不同的观点。我不知道矢量场的概念是什么时候正式引入的。然而,正如上面所提到的,我们确实知道正式的矢量代数是在麦克斯韦去世后才引入的。

  我个人的印象是麦克斯韦完全意识到了他所引入的位移电流的重要性,因为,他将它放在自己理论的第一组的三个方程中。然而,由于麦克斯韦谦虚的个性,他没有提及它的重要性。在现代版本中,这一套迪卡尔坐标的三个标量方程说明总电流是传导电流和位移电流之和,在这里用其在文章中的表示方法完全相同的形式表示出来:

  历史学家着重强调的是麦克斯韦没有将位移电流加进来达到其方程的对称性。在麦克斯韦所表达的20 个等式的方程中,对称性是很明显的。事实上,麦克斯韦没有将对称的磁荷或电荷包含进来;是亥维塞将它们加入进来的。历史学家们还指出并不完全清楚是什么灵感促使他将位移电流加入的,但在我看来,这似乎与上面所描述的边界电荷的类似性有关。麦克斯韦确实在“所谓的真空”中提到了传播问题,并且指出EM 力不是由物质传播的,但必须是由某种即使在真空中也存在的以太类的物质来传播的。

  当麦克斯韦 20 多岁,并且还是剑桥大学的学生时,便开始进行法拉第的力量线的工作。

  这个速度与光的速度是如此接近,以至于我们有强有力的理由来得出结论,光本身(包括辐射热,和其它辐射,如果存在的话)是按照电磁定律以波的形式传播通过电磁场时所产生的一种电磁扰动。

  当测量磁导率和介电常数时,麦克斯韦确实开玩笑地进一步指出,“在实验室中光的唯一用途是能看见仪器”。

  这篇文章中最显著的是麦克斯韦完全放弃了力学模型。虽然仍然存在力学模拟对比,并且他的理论中是以出现EM 力为结果的,但缺少力学模型则意味着,牛顿,整个物理界的上帝,与这个理论内在的工作原理是毫无关系的。从政治上说,这是个坏消息;但麦克斯韦从来就不是个搞政治的。

  让事情变得更糟的是,麦克斯韦特别谦虚。例如,在1870 年,他担任英国科学促进协会A 部的主席。他的就职演说发表在新的自然杂志的第二卷。麦克斯韦演讲的大部分用来宣传他的好朋友开尔文勋爵(LordKelvin)的多少有些荒诞(用今天的标准来看)的原子理论,而不是宣传他自己的EM 理论。在结束时,他提到,“我要介绍的另外一种电的理论…”甚至没有用自己的信誉来推荐自己的理论。

  弗雷曼·代森(Freeman Dyson)在一篇论文[11]中指出了这一点,在这篇文章中他讲述了物理学家迈克尔·扑平(Michael Pupin)的例子。扑平在1883 年从美国赴剑桥向麦克斯韦本人学习麦克斯韦理论时,才发现麦克斯韦已于四年前去世了。然后他发现整个剑桥大学竟然没有一个人可以讲授麦克斯韦理论。他最后到德国,向亥姆霍兹(Helmholtz)学习麦克斯韦的EM 理论。扑平回到美国,在那儿他在哥伦比亚大学向一代又一代的学生讲授EM 理论。

  麦克斯韦随后指出这种位移电并不是电流,因为它被束缚在涡流中,但它是“电流的开始”。

  今天我们经常会认为电场和磁场是实际存在的。其实并非如此。这些场纯粹是抽象的数学结构,可以让我们预测实际上会观察到的现象。

  正如代森指出的,我们可以很容易地理解和测量诸如能量和距离这样的事物。我们可以用焦耳每立方米来表示与E2 成正比的电能密度。用热量计来测量焦耳。用一根棍子来测量距离。但是我们如何来直接测量电场?你首先需要一个热量计的平方根。然后,用什么样的棍子来测量立方米的平方根?我们只能通过直接测量的如焦耳,牛顿和米来推断麦克斯韦的抽象的电场。

  如果我们不能直接测量或感受电场或磁场,那么它们有什么好处呢?正如代森所指出的,当我们解出了这些场后,便可以产生实际上可以感受和测量的量,如E2,H2 或E×H。我们在量子电动力学中也有同样的情况(QED,麦克斯韦理论只是它的一个特殊例子),正如理查德·费曼极为干练的描述[12](见图8)。

  麦克斯韦理论经过了20 年才被认识到它究竟是什么。这至少部分地由于它的复杂性(当在一个距离上的作用力工作得很好时,为什么还要操心这些复杂的“场”的问题呢?)。这同样还归因于缺乏基本的力学模型(由于这个原因,直到开尔文勋爵进入坟墓,他还坚信麦克斯韦的理论是不正确的)。最后,还由于麦克斯韦自己的谦虚。

  同样在这篇论文中,代森提出由于麦克斯韦的谦虚使得物理界受了20 年的挫折。这个失败并不是由于没有意识到麦克斯韦方程本身的重要性而使物理界受了20年的挫折;相反,是由于没有认识到麦克斯韦用抽象的数学所打开的与牛顿毫无关系,并且没有任何借口通过事实来理解现实的新世界。根据代森所言:

  麦克斯韦理论的最根本的重要性远远超出他的最直接的成就,即能够解释并且将电学和磁学统一起来。它最根本的重要性在于成为二十世纪所有重大成功的框架。它是爱因斯坦相对论的模板,是量子力学的模板,…以及熟知的将场和粒子统一起来的理论,粒子物理的标准模型。所有这些理论都是基于麦克斯韦在1865 年所引入的动态场这个概念之上的。

  所以这便是麦克斯韦的遗产,它用通过数学抽象出来的场的概念将物理从牛顿力学的禁锢中解脱出来,为20 世纪物理学的重大进步做好了准备。

  微波物位开关由三个电器隔离的单元构成:发射器、接收器与放大器,发射器与接收器相互成对安装。为获得良好的性能需确保接收器、...

  计算机辅助工程(CAE)软件工具需要花点时间才能熟练使用,但通过预测不同工作条件对电路或系统的影响,这些软件工具能够在产...

  在射频/微波测试系统中增强测量完整性的六项提示兼顾性能、速度和重复能力...

  通信技术并不神秘,5G作为通信技术皇冠上最耀眼的宝石,也不是什么遥不可及的创新革命技术,它更多是对现有通信技术的演进。正如...

  虽然光纤电缆在容量上一直优于微波,但许多通讯链路并不需要光纤的全部性能。随着更低成本与可更快部署的微波技术在容量上不断提...

  随着802.11ac和LTE产品的发展,对相应的功能测试系统也提出来更高的要求。与测试分析仪器相匹配的开关系统在尺寸,结构形式,...

  然而上述两种模型为了达到大信号特性高精度,仍旧需要引入较多的拟合参数,加大了模型参数提取的难度和模型....

  微波技术基础是由西安电子科技大学的廖承恩教授编纂推出的一本高等学校工科电子类专业基础课统编教材著作。....

  天线的基本功能是将馈线传输的电磁波变为自由空间传播的电磁波,天线的方向图是表征天线辐射时电磁波能量(....

  ADI公司推出了一对高集成的微波上下变频器,ADMV1013和ADMV1014。这两颗器件的工作频率....

  HPND-4005 用于带状线或微带电路的光束引线光束引线PIN二极管设计用于带状线或微带电路。应用包括微波频率下的开关,衰减,相移,限幅和调制。该器件的极低电容使其成为串联二极管配置中需要高隔离度的电路的理想选择Ct = 0.017pF,Rs @ 20mA = 4.7欧姆,Vbr = 120V,Tau = 100nSec。

  MGA-83563 3V PA /驱动器,22dBm PSAT,0.5-6GHz,SOT363(SC-70)

  MGA-83是一个3V器件,具有20dBm P1dB。它采用微型SOT-363封装,专为3V驱动放大器应用而设计。偏压:3V,142mA;增益= 22dB; P1dB = 19dBm; IP3i = 7dB;全部在2.4GHz,PAE = 41%。

  ABA-52563是一款通用5V硅宽带RFIC放大器,采用工业标准SOT-363(6引脚SC70)封装。该器件具有高增益,良好的线 GHz的平坦宽带频率响应。特性 在2GHz时,ABA-52563的增益为21dB,OIP3高达在5V / 34mA偏置时,20dBm和10dBm的P1dB。内部输入和输出50欧姆匹配使其易于使用,设计工作量很小,使其成为无线通信市场中频,缓冲和通用放大器的绝佳选择。

  MGA-82563 3V驱动器放大器,17dBm P1dB,低噪声,0.1-6GHz,SOT363(SC-70)

  MGA-82是3V器件,具有17dBm P1dB。它采用微型SOT-363封装,专为3V驱动放大器应用而设计。偏压:3V,84mA;增益= 13dB; NF = 2.2dB; P1dB = 17.3dBm;所有2GHz的IP3i = 14dB。

  Abhishek Kapoor与X-Microwave首席执行官John Richardson共同探....

  欢迎了解ADI公司新型微波和毫米波集成解决方案。为您的信号链提供完整集成的解决方案,支持灵活紧凑的系....

  观看Gary Lerude (Microwave Journal)和Bryan Goldstein(....

  易主之后,航锦科技开始加速对外收购,并于2017下半年收购了中电华星和长沙韶光两家军工优质标的。

  “毫米波 5G 是一项蕴含巨大潜力的新兴技术。” ADI公司微波通信部总经理 Karim Hamed....

  微波作为移动回传的重要方式之一,全球基站微波回传占比高达约70%(中美日韩除外),因此微波回传能力极....

  摘 要:提出基于微波光子技术的新体制雷达构成,分析其工作原理,提炼新体制雷达研究需要解决的关键技术。....

  刚过去的2015年颇有纪念意义:我们庆祝了爱因斯坦的广义相对论的百周年,然后是乔治·布尔(Georg....

  1.1、Release 18(V2017) Maxwell R18在R17的基....

  HMC939ALP4E 1.0 dB LSB GaAs MMIC 5位数字衰减器,0.1 - 33 GHz

  和特点 衰减范围:1 dB LSB步进至31 dB 插入损耗:典型值6 dB(33 GHz) 衰减精度:±0.5 dB(典型值) 输入线 dBm(典型值)o三阶交调点(IP3):40 dBm(典型值) 功率处理:27 dBm 双电源供电:±5 V CMOS/TTL兼容并行控制 24引脚、4 mm × 4 mm LFCSP封装HMC939ATCPZ-EP支持防务和航空航天应用(AQEC标准) 下载HMC939ATCPZ-EP数据手册(pdf) 军用温度范围:-55°C至+125°C 受控制造基线 唯一封装/测试厂 唯一制造厂 增强型产品变更通知 认证数据可应要求提供 产品详情 HMC939ALP4E是一款5位数字衰减器,以1 dB步长提供31 dB的衰减控制范围。HMC939ALP4E在100 MHz至33 GHz的指定频率范围内提供最佳的插入损耗、衰减精度和输入线 V双电源电压供电,通过集成片内驱动器提供CMOS/TTL兼容并行控制接口。该器件采用符合RoHS标准的紧凑型4 mm × 4 mm LFCSP封装。有关HMC939ALP4E的裸片版本,请参见HMC939A-DIE。应用 测试仪器仪表 微波无线电和甚小孔径终端(VSAT) 军...

  ADL5367 900 MHz 平衡混频器,内置高端本振(LO)缓冲器和RF巴伦

  和特点 功率转换损耗:7.0 dB RF频率范围:500 MHz至1500 MHz IF频率范围:DC至450 MHz 10 dBm阻塞单边带噪声指数:17 dB 输入IP3:37 dBm 输入P1dB :25 dBm 本振驱动:0 dBm(典型值) 单端50Ω RF与本振输入端口 高隔离度单刀双掷(SPDT)本振输入开关 单电源电压:3.3至5 V 5 mm × 5 mm,20引脚裸露焊盘LFCSP封装 2000V HBM / 500V FICDM ESD性能产品详情 ADI参考设计:混合信号数字预失真(MSDPD)平台ADL5367利用一个高线性度双平衡无源混频器内核以及集成的RF与本振平衡电路来实现单端工作。ADL5367内置一个RF巴伦,能够利用高端本振注入,在700至1000 MHz的RF输入频率范围内实现最佳性能。(用于低端本振注入的引脚兼容器件也已供应。)平衡的无源混频器提供良好的本振至射频泄漏(典型值优于-20 dBm),以及出色的互调性能。在手机应用中,带内阻塞信号可能会导致动态性能下降,ADL5367的平衡混频器内核能够提供极高的输入线性度,非常适合于要求严苛的手机应用。对于低压应用,ADL5367能在低至3V的电压下工作,并大幅降低直流电流。两个数字逻辑输入使得用户能够控制一个内部电阻串数模...

  和特点 输出频率范围:800 MHz至2.5 GHz I/Q基带频率范围:DC至70 MHz 输出功率:–3 dBm P1 dB 本底噪声:–147 dBm/Hz 正交相位精度:1°(均方根值) 振幅平衡:0.2 dB 低功耗,具有省电功能 2.7 V至5.5 V单电源 与 AD8345 / AD8349引脚兼容 产品详情 AD8346是一款硅I/Q正交调制器,设计用于800 MHz至2.5 GHz频率范围。该器件针对低功耗应用进行了优化,对于给定的电源电流,仍能提供极低的本底噪声和高输出功率。AD8346只需要–10 dBm LO驱动电平,提供额定50 Ω缓冲输出。该器件可提供出色的振幅和相位平衡以及边带抑制特性,支持高阶/高容量QAM调制无线已经过测试,用于直接上变频CDMA IS95调试器时,可提供–72dBc ACPR。AD8346采用16引脚超薄紧缩小型(TSSOP)封装,额定温度范围为–40°C至+85°C。供货提供样片和评估板,产品型号分别为AD8346ARU和AD8346-EVAL。其它调制器/解调器产品AD8345 - 250MHz - 1GHz RF / IF正交调制器AD8347 – 800MHz - 2.7 GHz RF / IF正交解调器AD8349 – 800MHz - 2.7 GHz直接上变频正交调制器 方框图...

  HMC1040-DIE 20 GHz 至 44 GHz、GaAs、pHEMT、MMIC、低噪声放大器

  和特点 低噪声指数:2 dB(典型值) 高增益:25.0 dB(典型值) P1dB 输出功率:13.5 dBm,24 GHz 至 40 GHz 高输出 IP3:25.5 dBm(典型值) 裸片尺寸:1.309 mm × 1.48 × 0.102 mm 产品详情 HMC1040CHIPS 是一款砷化镓 (GaAs)、赝晶高电子迁移率晶体管 (pHEMT)、微波单片集成电路 (MMIC) 低噪声宽带放大器,工作范围为 20 GHz 至 44 GHz。HMC1040CHIPS 具有自偏置功能,并提供 25.0 dB 的典型增益、2 dB 的典型噪声指数和 25.5 dBm 的典型输出三阶交调点 (IP3),只需要 65 mA 电流,2.5 V 电源电压。15.5 dBm 的典型饱和输出功率 (PSAT) 可以使低噪声放大器 (LNA) 用作 Analog Devices, Inc. 众多平衡式同样正交 (I/Q) 或镜频抑制混频器的本地振荡器 (LO) 驱动器。HMC1040CHIPS 还具有可在内部匹配至 50 Ω 的输入和输出,使其适用于基于表面安装技术 (SMT) 的高容量微波无线电应用。应用 软件定义无线电 电子战 雷达应用 卫星通信 电子战 仪器仪表 电信 方框图...

  和特点 工作频率范围:1.5 GHz至2.4 GHz 幅度控制范围:30 dB 笛卡尔I/Q基带频率范围:DC至230 MHz 输出三阶交调截点:+17.5 dBm 相位控制范围:360° 输出1dB压缩点:+8.5 dBm 输出开关禁用功能 5V单电源 与AD8340引脚兼容 产品详情 单芯片RF振幅与移相器AD8341是一款高性能RF矢量调制器,输入频率范围为1.5 GHz至2.4 GHz,可连续、独立地调整振幅和相位。通过宽带笛卡尔I/Q接口,可实现完整的360°相位调整和30 dB以上的增益控制。I和Q接口提供230 MHz的全功率信号带宽,可通过单端或差分方式驱动,具有±500 mV满量程输入。AD8341采用24引脚LFCSP封装,额定温度范围为–40°C至+85°C。供货提供样片和评估板,产品型号分别为AD8341ACP和AD8341-EVAL。同类产品AD8302 - 低频至2.7 GHz RF/IF增益相位检波器AD8340 - RF矢量调制器,700 MHz至1000 MHz其它调制器/解调器产品AD8345 - 250 MHz至1000 MHz低噪声RF/IF调制器AD8346 - 800 MHz至2.5 GHz低功耗直接上变频调制器AD8347 - 800 MHz至2.7 GHz直接变频解调器AD8348 - 50 MHz至1000 MHz RF/IF正交解调器AD...

  ADL6010 快速响应、45 dB 范围、 0.5 至 40 GHz 功率检波器

  和特点 具有线性度的肖特基二极管检波器 宽带50 Ω输入阻抗 具有最小斜率变化的精确响应范围:0.5 GHz至43.5 GHz 输入范围:−30 dBm至+15 dBm,参考50 Ω 出色的温度稳定性 2.1 V/VPEAK(输出电压根据输入峰值电压)斜率(10 GHz) 快速包络带宽: 40 MHz 快速输出上升时间: 4 ns 低功耗: 1.6 mA (5.0 V) 2 mm x 2 mm、6引脚LFCSP封装 产品详情 ADL6010是一款多功能微波频谱宽带包络检波器, 以单个易于使用的6引脚封装提供一流的精度和极低的功耗(8 mW)。 该器件输出的基带电压与射频(RF)输入信号的瞬时幅度成正比。 它的RF输入具有非常小的斜率变化,以便包络从0.5 GHz到43.5 GHz的输出传递函数检波器单元使用专利的八肖特基二极管阵列,后接新颖的线性化电路,可创建相对于输入电压幅度,总比例因子(或传递增益)标称值为?2.2的线本质上并不是一款功率响应器件,但以这种方式指定输入依然是很方便的。 因此,相对于50 Ω源输入阻抗,允许的输入功率范围为−30 dBm至+15 dBm。 对应的输入电压幅度为11.2 mV至1.8 V,产生范围从25 mV左右到4 V以上共模(COMM)的准直流输出。平衡检波器拓扑...

  HMC253AQS24 GAAS MMIC SP8T非反射式开关,DC - 2.5 GHz

  和特点 低插入损耗(2 GHz):1.1dB 单正电源:Vdd = +5V 集成式3:8 TTL解码器 24引脚QSOP封装 产品详情 HMC253AQS24和HMC253AQS24E均为低成本非反射SP8T开关,采用24引脚QSOP封装,宽带工作频率范围为DC至2.5 GHz。该开关提供单正偏置和真TTL/CMOS兼容性。该开关上集成了3:8解码器,仅需三个控制线和一个正偏置即可选择每个路径。HMC253AQS24和HMC253AQS24E SP8T将替代SP4T和SPDT MMIC开关的多种配置。应用 CATV/DBS CDMA 蜂窝/PCS 方框图...

  HMC647A GaAs MMIC 6位数字移相器,2.5-3.1 GHz

  和特点 低RMS相位误差: 1.5° 低插入损耗: 4 dB 高线 dBm 正控制逻辑 360°覆盖,LSB = 5.625° 28引脚QFN无引脚SMT封装: 36mm2产品详情 HMC647ALP6E是一款6位数字移相器,额定频率范围为2.5至3.1 GHz,提供360度相位覆盖,LSB为5.625度。 HMC647ALP6E在所有相态具有1.5度的极低RMS相位误差及±0.4 dB的极低插入损耗变化。 此款高精度移相器通过0/+5V的正控制逻辑控制。HMC647ALP6E采用紧凑型6x6 mm塑料无引脚SMT封装,内部匹配50 Ohms,无需任何外部元件。 应用 EW接收器 气象和军用雷达 卫星通信 波束成形模块 相位抵消 方框图...

  ADMV1011 17 GHz至24 GHz、GaAs、MMIC、I/Q上变频器

  和特点 RF输出频率范围:17 GHz至24 GHz IF输入频率范围:2 GHz至4 GHz LO输入频率范围:8GHz至12 GHz,集成2×乘法器 边带抑制:32 dB(下边带) P1dB:25 dBm 增益调节:30 dB 输出IP3:33 dBm 匹配50 Ω RF输出、LO输入和IF输入 32引脚、4.9 mm × 4.9 mm LCC封装 产品详情 ADMV1011是一款采用紧凑的砷化镓(GaAs)设计、单芯片微波集成电路(MMIC)、双边带(DSB)上变频器,采用符合RoHS标准的封装,针对工作频率范围为17 GHz至24 GHz的点对点微波无线电设计进行优化。ADMV1011提供21 dB的转换增益,具有针对下边带和上边带的32 dBc和23 dBc边带抑制性能。ADMV1011采用射频(RF)放大器,前接由驱动放大器驱动集成2×乘法器的本振(LO)的同相/正交(I/Q)双平衡混频器。还提供IF1和IF2混频器输入,需通过外部90°混合选择所需的边带。I/Q混频器拓扑结构则降低了干扰边带的滤波要求。ADMV1011为混合型DSB上变频器的小型替代器件,它无需线焊,可以使用表贴制造装配。ADMV1011上变频器采用紧凑的散热增强型、4.9 mm × 4.9 mm LCC封装。ADMV1011工作温度范围为−40°C至+85°...

  和特点 高性能有源混频器 宽带操作,频率最高达2.5 GHz 转换增益:7 dB 输入IP3:16.5 dBm LO驱动:–10 dBm 噪声系数:14 dB 输入P1dB:2.8 dBm 差分LO、IF和RF端口 50 Ω LO输入阻抗 单电源供电:5 V(50 mA,典型值) 省电模式:20 µA(典型值)产品详情 AD8343是一款高性能、宽带有源混频器,具有极低交调失真,所有端口均具有宽带宽,非常适合要求严格的发射应用或接收通道应用。AD8343的典型变频增益为7 dB。集成的LO驱动器以低LO驱动电平,支持50 Ω差分输入阻抗,有助于将外部元件数降至最少。开发差分输入可以直接与差分滤波器接口,或通过平衡-不平衡变换器(变压器)驱动,由单端源提供平衡驱动。开集差分输出可以用来驱动差分中频信号接口,或通过匹配网络或变压器转换为单端信号。以VPOS电源电压为中心时,输出摆幅为±1 V。LO驱动器电路的典型功耗为15 mA。可利用两个外部电阻来设置混频器内核电流,以达到要求的性能,总电流为20 mA至60 mA。采用5 V单电源供电时,相应的功耗为100 mW至300 mW。AD8343采用ADI公司的高性能25 GHz硅双极性IC工艺制造,提供14引脚TSSOP封装,工作温度范围为−...

  ADF7023 高性能、低功耗ISM频段FSK/GFSK/OOK/MSK/GMSK收发器IC

  和特点 超低功耗、高性能收发器 工作频段862 MHz至928 MHz431 MHz至464 MHz 支持的数据速率:1 kbps至300 kbps 电源电压范围:2.2 V至3.6 V 单端和差分PA 中频带宽可编程的低中频接收机:100 kHz、150 kHz、200 kHz、300 kHz 接收机灵敏度(BER)−116 dBm(1.0 kbps,2FSK、GFSK)−107.5 dBm(38.4 kbps,2FSK、GFSK)−102.5 dBm(150 kbps,GFSK、GMSK)−100 dBm(300 kbps,GFSK、GMS)−104 dBm(19.2 kbps,OOK) 极低功耗 RF输出功率范围:−20 dBm至+13.5 dBm(单端PA) 欲了解更多特性,请参考数据手册产品详情 ADF7023是一款工作在862 MHz至931 MHz和431 MHz至464 MHz频段的极低功耗、高集成度2FSK/GFSK/OOK/MSK/GMSK收发器,这些频段覆盖免许可的433MHz、868MHz和915MHz ISM频段。它适合欧洲ETSI EN300-220、北美FCC (Part 15)、中国短程无线监管标准或其它类似地区标准下的电路应用。支持1 kbps至300 kbps的数据速率。发射RF频率合成器包含一个VCO和一个输出通道频率分辨率为400 Hz的低噪声小数N分频锁相环(PLL)。VCO的工作频...

  HMC-C584 0.1 GHz至40 GHz、31 dB、5位数字衰减器

  和特点 1.0 dB LSB步进至31 dB 每位单正控制线 dB(典型值) 输入IP3: 43 dBm CMOS兼容控制 密封模块 可现场更换的K型连接器 工作温度: -55℃至+85℃ 产品详情 HMC-C584是一款0.1 GHz至40 GHz、5位、砷化镓(GaAs) IC数字衰减器,封装在微型密封模块中。 这款宽带衰减器具有7 dB的典型插入损耗和43 dBm的输入IP3,位值为1 dB (LSB)、2 dB、4 dB、8 dB和16 dB,总衰减范围为31 dB。 该器件的衰减精度很高,典型步长误差为±1.0 dB。 五个控制电压输入在0 V和5 V之间切换,用于选择每个衰减状态。 可移除的K型连接器可以拆卸,以便将模块的输入/输出引脚直接连接到微带或共面电路。应用 光纤和宽带电信 微波无线电和VSAT 军用无线电、雷达和电子对抗(ECM) 空间系统 测试仪器仪表 方框图...

  ADRF6601 750 MHz至1160 MHz接收混频器,集成小数N分频PLL和VCO

  和特点 集成小数N分频PLL的接收混频器 RF输入频率范围:300 MHz至2500 MHz 内部LO频率范围:750 MHz至1160 MHz 输入P1dB:14.5 dBm 输入IP3:31 dBm 通过外部引脚优化IIP3 SSB噪声系数IP3SET引脚断开:13.5 dBIP3SET引脚接3.3 V电压:14.6 dB 电压转换增益:6.7 dB 200 Ω IF输出匹配阻抗 IF 3 dB带宽:500 MHz 可通过三线式SPI接口进行编程 40引脚、6 mm × 6 mm LFCSP封装 产品详情 ADRF6601是一款高动态范围有源混频器,集成锁相环(PLL)和压控振荡器(VCO)。PLL/频率合成器利用小数N分频PLL产生fLO输入,供给混频器。基准输入可以进行分频或倍频,然后施加于PLL鉴频鉴相器(PFD)。PLL支持12 MHz至160 MHz范围内的输入基准频率。PFD输出控制一个电荷泵,其输出驱动一个片外环路滤波器。然后,环路滤波器输出施加于一个集成式VCO。VCO输出(2 × fLO)再施加于一个LO分频器和一个可编程PLL分频器。可编程PLL分频器由一个Σ-Δ调制器(SDM)进行控制。SDM的模数可以在1至2047范围内编程。有源混频器可将单端50 Ω RF输入转换为200 Ω差分IF输出。...

  ADRF6720-27 宽带(400 MHz至3 GHz)正交调制器,集成PLL/VCO和2.68 V输入偏置

  和特点 集成小数N分频PLL的I/Q调制器 RF输出频率范围: 400 MHz至3,000 MHz 内部LO频率范围: 356.25 MHz至2855 MHz 输出P1dB: 10.8 dBm (2140 MHz) 输出IP3: 31.1 dBm (2140 MHz) 载波馈通: −44.3 dBm (2140 MHz) 边带抑制: -40.8 dBc(2,140 MHz) 噪底: −159.5 dBm/Hz (2140 MHz) 基带1 dB调制带宽: 1000 MHz 基带输入偏置电平: 2.68 V 电源: 3.3 V /425 mA 集成式RF可调谐巴伦,允许单端RF输出 多核集成式VCO HD3/IP3优化 边带抑制和载波馈通优化 高端/低端LO注入 可通过三线式串行端口接口(SPI)进行编程 40引脚6 mm x 6 mm LFCSP封装 产品详情 ADRF6720-27是一款集成频率合成器的宽带正交调制器,非常适合用于3G和4G通信系统。 ADRF6720-27内置一个高线性度宽带调制器、一个集成式小数N分频锁相环(PLL),以及四个低相位噪声多核压控振荡器(VCO)。 ADRF6720-27本振(LO)信号可从内部通过片内整数N分频或小数N分频频率合成器产生,也可从外部通过高频、低相位噪声LO信号产生。 内部集成式频率合成器利用多核VCO,实现356.25 MHz到28...

  和特点 宽带、双通道、有源下变频混频器 低失真、快速建立、IF DGA RF输入频率范围:690 MHz至3.8 GHz RF输入端的可编程巴伦 差分和单端LO输入模式 差分IF输出阻抗:100 Ω 可通过三线式串行端口接口(SPI)进行编程 对于RF=1950 MHz、IF=281 MHz、高线性度模式: 电压转换增益,包括IF滤波器损耗:−5至+26.5 dB (更多详细信息,请参见数据手册) 灵活的省电模式,针对低功耗操作 通道使能后的上电时间:100 ns,典型值 3.3 V单电源 高线 mA 产品详情 ADRF6658是一款高性能、低功耗、宽带、双通道无线电频率(RF)下变频器,集成中频(IF)数字控制放大器(DGA),适用于宽带、低失真基站无线电接收机。 双通道Rx混频器为双平衡吉尔伯特单元混频器,具有高线性度和出色的图像抑制能力。 两款混频器均可将50 Ω RF输入转换为开集宽带IF输出。 在混频器输入前,RF输入端的内部可调谐巴伦可抑制RF信号谐波并衰减带外信号,从而减少输入反射和带外干扰信号。 灵活的本振(LO)架构允许使用差分或单端LO信号。 双通道IF DGA基于ADL5201和ADL5202,固定差分输出...

  HMC6300 60 GHz毫米波发射器,57 GHz - 64 GHz

  和特点 频段:57 - 64 GHz RF信号带宽:最高达1.8 GHz 针对1 dB压缩的输出功率:15 dBm 增益:5 - 35 dB 数字和模拟RF和IF增益控制 集成频率合成器 集成镜像抑制滤波器 部分外置的环路滤波器 支持外部LO 片内温度传感器 支持256-QAM调制 集成MSK调制器 通用模拟I/Q基带接口 三线式串行数字接口 符合RoHS标准的65引脚晶圆级球栅阵列封装 产品详情 HMC6300BG46是一款完整的毫米波发射器集成电路,采用符合RoHS标准的6 mm x 4 mm晶圆级球栅阵列(WLBGA)封装,工作频率范围为57 GHz至64 GHz,调制带宽高达1.8 GHz。集成式频率合成器在250、500或540 MHz步长下进行调谐,具有出色的相位噪声,支持高达64-QAM的调制。或者,可以注入外部LO,它支持用户可选LO特性或相位相干发射和接收操作以及高达256-QAM的调制。通过通用模拟基带IQ接口提供对各种调制格式的支持。发射器芯片还支持专用FSK、MSK、OOK调制格式,从而实现更低成本和功耗的串行数据链路,而无需使用高速数据转换器。差分输出向100 Ω负载提供高达15 dBm的线性输出功率。同时支持单端操作,最高12 dBm。与HMC6301BG46一起,完整的60 G...

  微波控制开关在自动控制、报警等各方面有着广泛的用途。很多刊物介绍的高性能微波探头,需用专用控制芯片。....

  本文档的主要内容详细介绍的是微波元器件和微波集成电路的学习课件免费下载主要内容包括了:微波无源元器件....

  一般的器件达到几百兆Hz就已经是极限了,能找得到这样的大带宽中频器件么?我们遍寻了一次供应商,结论就....

  微波是指频率在300Mhz---300Ghz之间的电磁波,微波具有穿透物体和被物体反射的特性,本设备....

  微波工程的持续普及是令人满意的。我收到了来自世界各地的学生和老师的许多信件和电子邮件,并提出了积极的....

  NBB-302低成本、高性能通用射频和微波放大解决方案放大器的资料概述

  NBB-302级联宽带InGaP/GaAs MMIC放大器是一种低成本、高性能的通用射频和微波放大解....

  NBB-400可级联宽带GaAs MMIC放大器的详细数据手册免费下载

  NBB-400级联宽带InGaP/GaAs MMIC放大器是一种低成本、高性能的通用射频和微波放大解....

  近年来,雷达研究开始引入越来越多的微波光子技术。利用微波光子技术在实现大带宽的任意波形信号上表现出优....

  光波炉又叫光波微波炉,光波是微波炉的辅助功能,只对烧烤起作用。没有微波,光波炉只相当于普通烤箱。市场....

  低压故障一般是由于低压供电线V交流电压没有送往高压变压器或变频板,然后高压局部不....

  不同的智能微波炉品牌有不同的使用方法,但是大致损伤步骤都差不多。智能微波炉主要包括控制面板、观察窗、....

  格兰仕微波炉电路图中FU保险是防止微波炉在为关闭炉门的状态下工作;RY2热保护器是对微波炉起到一个温....

  自20世纪20年代以来,微波能量就一直来源于真空管和磁控管。尽管半导体RF有诸多进展,如今的一些高功....

  随着通信和军工电子的飞速发展,微波信号源的应用已越来越普遍,而如何有效检测和分析微波信号源就成为众多....

  现代社会是一个无线的社会,以后更多的会出现这样形形色色的无线产品,比如以后我们都会知道一种叫什么物联....

  ADI公司提供业界最齐全的射频、微波和毫米波产品系列。我们的技术门类广泛,涵盖GaAs、GaN、Si....

  Abhishek Kapoor与X-Microwave首席执行官John Richardson共同探....

  微波射频开关基于labview软件平台,由计算机提供给电压控制信号。该控制信号是数字信号,只能提供高....

  如今的电子产品已经不再像上世纪 70 年代的电视和电冰箱一样,消费者每隔十年才更新换代一次。现在几乎....

  RFID(RadioFrequeneyIdentification)射频识别是一种非接触式的自动识别....

  厉害!Molex发布最新MediSpec非磁性射频 (RF) 触点和模块产品族

  全球顶尖电子连接器企业Molex 公司发布了最新的MediSpecTM 非磁性射频(RF) 触点和模....

  RFID(RadioFrequeneyIdentification)射频识别是一种非接触式的自动识别....

  设计轴子探测实验所面临的主要挑战包括:没有人知道粒子的质量,以及它与普通粒子间的耦合到底有多弱。事实....

  功率行波管的发展走过了70年的历程,具有宽频带、高功率、高效率等特点,是现代雷达通信电子战等系统的核....

  由于微波频段存在趋肤效应,导致微波器件导体内的电流通常集中在表面微米级的厚度内,这是大家所熟知的概念....

  华为正式发布业界首个固网微波解决方案,进一步完善千兆接入的媒介承载方式,全面实现任意媒介的千兆接入(....

  运营商对5G移动应用的关注度日益提升,美国、中国、日本及韩国等市场尤为显著,诺基亚5G FIRST端....

  近日,无线基础设施领域专业权威媒体RCR Wireless News发布第三方市场研究机构Sky L....

  无天线系统的一个主要优点是整个系统的频率响应是通过匹配网络而非天线结构和几何形状来实现定制的。一个标....

  信号源是雷达发射机与接收机的关键组成部分,其性能直接影响着雷达的探测能力。基于电子技术的信号产生在信....

热销推荐